QUANTUM LIE ALGEBRAS OF TYPE An POSITIVE, PBW BASES AND THE YANG-BAXTER EQUATION
نویسنده
چکیده
We show explicitly a generalised Lie algebra embedded in the positive and negative parts of the Drinfeld-Jimbo quantum groups of type An. Such a generalised Lie algebra satisfy axioms closely related to the ones found by S.L. Woronowicz. For the universal enveloping algebra of such generalised Lie algebras we establish several conditions in order to obtain bases of type Poincaré-Birkhoff-Witt. Besides a graded algebra is proposed and some relations with the quantum Yang-Baxter equation are studied.
منابع مشابه
Universal property of skew P BW extensions
In this paper we prove the universal property of skew PBW extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew PBW extensions include as particular examples Weyl algebras, enveloping algebras of finite-dimensional Lie algebras (and its quantization), Art...
متن کاملRational R - matrices , centralizer algebras and tensor identities for e 6 and e 7 families of Lie algebras
We use Cvitanović’s diagrammatic techniques to construct the rational solutions of the Yang-Baxter equation associated with the e6 and e7 families of Lie algebras, and thus explain Westbury’s observations about their uniform spectral decompositions. In doing so we explore the extensions of the Brauer and symmetric group algebras to the centralizer algebras of e7 and e6 on their lowest-dimension...
متن کامل2 4 N ov 2 00 7 Rational R - matrices , centralizer algebras and tensor identities for e 6 and e 7 exceptional families of Lie algebras
We use Cvitanović’s diagrammatic techniques to construct the rational solutions of the Yang-Baxter equation associated with the e6 and e7 families of Lie algebras, and thus explain Westbury’s observations about their uniform spectral decompositions. In doing so we explore the extensions of the Brauer and symmetric group algebras to the centralizer algebras of e7 and e6 on their lowest-dimension...
متن کاملRational R - matrices , centralizer algebras and tensor identities for e 6 and e 7 exceptional families of Lie algebras
We use Cvitanović’s diagrammatic techniques to construct the rational solutions of the Yang-Baxter equation associated with the e6 and e7 families of Lie algebras, and thus explain Westbury’s observations about their uniform spectral decompositions. In doing so we explore the extensions of the Brauer and symmetric group algebras to the centralizer algebras of e7 and e6 on their lowest-dimension...
متن کاملCohomology of Categorical Self-Distributivity
We define self-distributive structures in the categories of coalgebras and cocommutative coalgebras. We obtain examples from vector spaces whose bases are the elements of finite quandles, the direct sum of a Lie algebra with its ground field, and Hopf algebras. The selfdistributive operations of these structures provide solutions of the Yang–Baxter equation, and, conversely, solutions of the Ya...
متن کامل